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Abstract

The purpose of this paper is to extend classical modal analysis to decouple any viscously damped linear system in

oscillatory free vibration. Based upon an exposition of how viscous damping causes phase drifts in the components of a

linear system, the concept of non-classically damped modes of vibration is introduced. These damped modes are real and

physically excitable. By synchronizing the phase angles in each damped mode, a time-varying transformation is

constructed to decouple damped oscillatory free vibration. The decoupling procedure devised herein reduces to classical

modal analysis for systems that are undamped or classically damped. This paper constitutes the first part of a solution to

the ‘‘classical decoupling problem’’ of linear systems.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that an undamped linear dynamical system possesses classical normal modes, and that in
each mode different parts of the system vibrate in a synchronous manner. The normal modes constitute a
modal matrix, which defines a linear coordinate transformation that decouples the undamped system. This
process of decoupling the equation of motion of a dynamical system is a time-honored procedure termed
modal analysis. Upon decoupling, an undamped linear system can be treated as a series of independent single-
degree-of-freedom systems.

In the presence of damping, a linear system cannot be decoupled by modal analysis unless it possesses a full
set of classical normal modes, in which case the damped linear system is said to be classically damped.
Rayleigh [1] showed that a system is classically damped if its damping matrix is a linear combination of its
inertia and stiffness matrices. A damped system possessing such a special property is said to be proportionally
damped. Classical and in particular proportional damping is routinely assumed in design and computations.

There is no reason why damping in a linear system should be classical. Practically speaking, classical
damping means that energy dissipation is almost uniformly distributed throughout the system. This
assumption is violated for systems consisting of two or more parts with significantly different levels of
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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damping. Examples of such systems include soil–structure systems [2], base-isolated structures [3–5], and
systems in which coupled vibrations of structures and fluids occur. Increasing use of special energy-dissipating
devices in control constitutes another important example. In fact, experimental modal testing suggests
that no physical system is strictly classically damped [6]. Linear systems are generally non-classically
damped.

The purpose of this paper is to develop a method to decouple any viscously damped linear system in
oscillatory free vibration. The method devised is an extension of classical modal analysis, which is only
applicable to undamped or classically damped systems. Based upon an exposition of the mechanics of viscous
damping, a real time-varying transformation is constructed in the configuration space to decouple oscillatory
free vibration. The organization of this paper is as follows. In Section 2, the traditional theory of coordinate
coupling in linear dynamical systems is concisely surveyed. This survey sets up the terminology and notation
used throughout the paper. The problem of decoupling is then formulated in Section 3, for which the
quadratic eigenvalue problem is called into play. Assumptions that are not essential but are made for gaining
physical insight are discussed. The concept of non-classically damped modes of vibration is introduced in
Section 4. An exposition of how an oscillatory system can be decoupled by phase synchronization of its
damped modes is given in Section 5. It is also shown that the method of phase synchronization reduces to
classical modal analysis for systems that are undamped or classically damped. In Section 6, three examples are
given to illustrate the process of decoupling. A summary of findings is provided in Section 7. This paper
constitutes the first part of a method to decouple any damped linear dynamical system. Non-oscillatory free
vibration and forced vibration will be considered in a future paper.
2. Coordinate coupling in damped linear systems

The equation of motion of an n-degree-of-freedom viscously damped linear system in free vibration can be
written in the form

M€qþ C_qþ Kq ¼ 0, (1)

where the generalized coordinate

q ¼ ½q1 q2 � � � qn�
T. (2)

For passive systems, the mass matrix M, damping matrix C, and stiffness matrix K are real, symmetric and
positive definite of order n. These characteristics are not arbitrary, but in fact have solid footing in the theory
of Lagrangian dynamics. For example, symmetry of M is based upon the fact that the quadratic form of
kinetic energy can always be defined in terms of a symmetric matrix. In addition, any linear system is passive if
the rigid-body modes are eliminated, which is not an essential restriction at all. In general, the matrix
differential equation (1) is coupled. The ith component equation involves not only qi and its derivatives but
also other coordinates and their derivatives as well. Coupling is not an inherent property of a system but
depends on the generalized coordinates used.
2.1. Decoupling by classical modal analysis

Associated with the undamped system is a symmetric eigenvalue problem [7]

Ku ¼ lMu. (3)

Owing to the positive definiteness of the matrices M and K, all eigenvalues li are real and positive, and the
corresponding natural modes ui are real and orthogonal with respect to either M or K. Define the modal and
spectral matrices, respectively, by

U ¼ ½u1ju2j � � � jun�, (4)

X ¼ diag½l1; l2; . . . ; ln�. (5)
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Upon normalization of the natural modes with respect to the mass matrix, the generalized orthogonality of the
modes can be expressed in a compact form:

UTMU ¼ I, (6)

UTKU ¼ X. (7)

Define a modal transformation by

q ¼
Xn

i¼1

piðtÞui ¼ Up. (8)

In terms of the principal coordinate p, the equation of damped free vibration takes the canonical form

€pþD_pþXp ¼ 0, (9)

where the symmetric matrix

D ¼ UTCU (10)

is referred to as the modal damping matrix. Note that the mass matrix M and the stiffness matrix K have been
diagonalized by modal transformation. Thus an undamped system can always be decoupled by modal
analysis. Any coupling in a linear system occurs ultimately through damping.
2.2. Inadequacy of classical modal analysis

A system is classically damped if it can be decoupled by classical modal analysis, whereby the modal
damping matrix D in Eq. (10) is diagonal. In Section 97 of ‘‘The Theory of Sound’’ in 1894, Rayleigh [1]
asserted that a system is classically damped if

C ¼ aMþ bK (11)

for some scalar constants a and b. This requirement, referred to as proportional damping, is sufficient but not
necessary for classical damping. In 1965, Caughey and O’Kelly [8] established that a necessary and sufficient
condition under which a system is classically damped is

CM�1K ¼ KM�1C. (12)

There is, of course, no particular reason why condition (12) should be satisfied. In general, a linear dynamical
system is non-classically damped and it cannot be decoupled by classical modal analysis.
2.3. Inadequacy of state space approach

Classical modal analysis utilizes a real transformation (8). Foss and others [9–11] extended classical
modal analysis to a process of complex modal analysis in the state space to treat non-classically
damped systems. However, the state-space approach has never appealed to practicing engineers.
There are several reasons for this situation. A common excuse is that the state-space approach is
computationally more involved because the dimension of the state space is twice the number of degrees of
freedom. Another reason is that complex modal analysis still cannot decouple all non-classically damped
systems. A condition of non-defective eigenvectors in the state space must be satisfied in order for complex
modal analysis to achieve complete decoupling. More importantly, there is little physical insight associated
with different elements of complex modal analysis. Classical modal analysis is amenable to physical
interpretation. For example, each normal mode ui represents a physical profile of vibration. Even the
eigenvalue problem (3) can be interpreted geometrically as the problem of finding the principal axes of an
n-dimensional ellipsoid.
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3. Problem statement

The ‘‘classical decoupling problem’’ is concerned with the elimination of coordinate coupling in damped
linear dynamical systems. It is a well-trodden problem that has attracted the attention of many researchers in
the past century. In ‘‘The Theory of Sound’’ in 1894, Rayleigh [1] already expounded on the significance
of system decoupling and introduced the concept of proportional damping. Over the years, various types of
decoupling approximation were employed in the analysis of damped systems [12–21]. Different indices of
coupling were also introduced to quantify coordinate coupling [22–29]. However, a solution to the ‘‘classical
decoupling problem’’ has not been reported in the open literature.

Mathematically, the ‘‘classical decoupling problem’’ is equivalent to the problem of simultaneous
conversion of M, C, and K into diagonal forms. Ma and Caughey [30] showed that no time-invariant linear
transformations in the configuration space will decouple every damped linear system. Even partial decoupling,
i.e. simultaneous conversion of M, C, and K into upper triangular forms, is not ensured with time-invariant
linear transformations [31]. As a consequence, any universal decoupling transformation in the configuration
space, if it exists, must be at least time-varying or even nonlinear.

3.1. The quadratic eigenvalue problem

Postulate that system (1) has a solution of the form

q ¼ velt, (13)

where v is an n-dimensional column vector of unspecified constants and l is a scalar parameter. Upon
substitution into Eq. (1), a quadratic (nonlinear) eigenvalue problem [32,33]

ðMl2 þ Clþ KÞv ¼ 0 (14)

is obtained. There are 2n eigenvalues li but there cannot be more than n linearly independent eigenvectors vi

where i ¼ 1; . . . ; 2n. The eigenvalues are the roots of the polynomial equation

detðMl2 þ Clþ KÞ ¼ 0. (15)

Since the coefficients of the above polynomial are real, any complex roots must occur in complex conjugate
pairs. The corresponding eigenvectors are also complex conjugates. In addition, the real parts of all roots must
be negative because energy is dissipated by damping.

The general solution of system (1) can be expressed in terms of the eigenvalues li and the corresponding
eigenvectors vi. If the eigenvalues are distinct, the solution is a linear combination of the form

q ¼
X2n

i¼1

civie
li t, (16)

where ci are 2n constants to be obtained from initial conditions.

3.2. Oscillatory nature of solution

Pre-multiply Eq. (14) by the complex conjugate transpose v* to obtain

v�Mvl2 þ v�Cvlþ v�Kv ¼ 0. (17)

The roots of the above quadratic equation are given by

l ¼
�v�Cv�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�CvÞ2 � 4ðv�MvÞðv�KvÞ

q
2v�Mv

. (18)

The response of system (1) is purely oscillatory if all eigenvalues are complex, which is guaranteed if the
discriminant

DðxÞ ¼ ðx�CxÞ2 � 4ðx�MxÞðx�KxÞo0 (19)
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for arbitrary n-dimensional vector xa0. In this case,

Re½l� ¼ a ¼ �
v�Cv

2v�Mv
o0, (20)

because M and C are positive definite.
3.3. Assumptions and possible relaxation

It will be assumed that damping is light so that the 2n eigenvalues li of the quadratic eigenvalue problem
(14) are: (a) complex and (b) distinct. These assumptions are made to streamline the introduction of new
concepts and they can be readily relaxed. First, some eigenvalues will be real if assumption (a) is relaxed. This
issue will be resolved in a subsequent paper [34] on the decoupling of systems in non-oscillatory free vibration
and in forced vibration. Second, assumption (b) can be relaxed effortlessly to the less restrictive condition that
eigenvectors associated with repeated eigenvalues are independent. There will be little change to the exposition
of decoupling. For example, Eq. (16) remains the general solution of system (1) as long as there is a full
complement of independent eigenvectors associated with each repeated eigenvalue.

When an eigenvalue is repeated m times and a full complement of m independent eigenvectors cannot be
found, the eigenvalue problem (14) is said to be defective. As an example, Eq. (14) must be defective if any
eigenvalue is repeated more than n times [32]. Relaxation of assumption (b) to include defective eigenvalue
problems is of a purely theoretical nature but is still relatively straightforward. However, physical insight is
obscured due to the occurrence of Jordan sub-matrices in many equations. A numerical example will be
provided to demonstrate how defective problems can be decoupled. Should the methodology expounded in
this paper be accepted for use, a thorough treatment of defective problems will become more deserving.

Perhaps an alternative viewpoint of the significance of defective eigenvalue problems should be brought up.
It is recognized that the probability of a randomly chosen (uniformly distributed in a bounded continuous
domain) square matrix being singular is zero. Since a square matrix is singular if and only if its column vectors
are dependent, the probability that a set of randomly chosen column vectors being dependent, therefore, is
zero. The eigenvectors of Eq. (14) are continuous functions of M, C, and K (except on a set of measure zero).
If these symmetric and positive definite matrices are random (uniformly distributed), the resulting eigenvectors
are also random. Therefore, loosely speaking, the probability that the eigenvalue problem (14) being defective
is zero.
4. Damped modes of vibration

As explained earlier, it is assumed for convenience that all eigenvalues of Eq. (14) are complex and distinct.
The eigenvalues lj and the corresponding eigenvectors vj occur in n pairs of complex conjugates. Let

lj ¼ aj þ ioj, (21)

vj ¼ ½rj1e
�ifj1 rj2e

�ifj2 � � � rjne
�ifjn �T (22)

constitute an eigensolution, where rjk, fjk are real parameters and j; k ¼ 1; . . . ; n. Then lj ¼ aj � ioj and vj also
constitute an eigensolution. Note that ajo0 and each eigenvector vj can only be determined within an
arbitrary multiplicative constant.

The two eigensolutions vje
lj t and vje

lj t combine to generate a damped mode of vibration defined by the
linear combination

sjðtÞ ¼ ajvje
ðajþiojÞt þ bjvje

ðaj�iojÞt (23)

for j ¼ 1; . . . ; n. If damped harmonic vibration with frequency oj is physically realizable, sj(t) must be real.
This implies that bj ¼ aj and, as a result,

sjðtÞ ¼ 2Re½ajvje
ðajþiojÞt� ¼ 2eaj t Re½ajvje

ioj t�. (24)
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Write 2aj in polar form so that

2aj ¼ Cje
�iyj , (25)

where Cj and yj are real. It follows that:

sjðtÞ ¼ Cje
aj t Re½vje

iðoj t�yjÞ�. (26)

Substitute Eq. (22) into (26) to obtain

sjðtÞ ¼ Cje
aj t

rj1 cosðoj t� yj � fj1Þ

rj2 cosðoj t� yj � fj2Þ

..

.

rjn cosðoj t� yj � fjnÞ

2
666664

3
777775. (27)

In the literature, the 2n eigensolutions vje
lj t of Eq. (14) are sometimes referred to as the complex

modes in configuration space [7,35]. The n damped modes sj(t) defined herein are real, physically excitable,
and are essentially the same as the real parts of the conjugate complex modes. These real modes sj(t) coincide
with the classical natural modes for an undamped or classically damped system. It can be deduced from
Eq. (16) that

qðtÞ ¼
Xn

j¼1

ðajvje
lj t þ ajvje

lj tÞ ¼
Xn

j¼1

sjðtÞ. (28)

Thus the general solution of system (1) is simply a superposition of n damped modes of vibration.
4.1. Classically damped modes

A classically damped system possesses a full set of classical natural modes [8]. Both lj and lj are associated
with a real eigenvector vj, which coincides with a classical natural mode, say uj, of the symmetric eigenvalue
problem (3). In other words, fj1 ¼ fj2 ¼ � � � ¼ fjn ¼ 0 in Eq. (22) and

uj ¼ vj ¼ vj ¼ ½rj1 rj2 � � � rjn�
T. (29)

Thus a classically damped mode of vibration has the functional form

sjðtÞ ¼ Cje
aj t cosðoj t� yjÞuj. (30)

The above expression represents synchronous motion in which all system components perform harmonic
motion with the same damped frequency oj, passing through their equilibrium positions at the same instant of
time. For an undamped system, aj ¼ 0 and lj ¼ ioj, implying that the amplitude of modal vibration does not
decrease and that oj is a natural frequency.
4.2. Non-classically damped modes

In a non-classically damped system, the eigenvectors vj are complex. In each damped mode of vibration all
system components perform harmonic vibration with identical frequency oj and with the same exponential
decay aj. However, elements of the modal vector sj(t) in Eq. (27) generally possess different phase angles fjk. As a
consequence, the system components do not pass through their equilibrium positions at the same time. On the
other hand, the phase difference between any two elements in sj(t) is constant. Thus the order in which the
system components pass through their equilibrium positions remains unchanged. After one complete cycle
the components return to positions separated by the same phase angles as in the beginning of the cycle. There
exists an unchanging pattern from cycle to cycle while the motion decays exponentially. Although the pattern is
well defined it is not as easy to recognize as a classical natural mode. Each non-classically damped mode sj(t),
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for arbitrarily selected Cj and yj, can indeed be excited with the initial conditions

qð0Þ ¼ Cj

rj1 cosðyj þ fj1Þ

rj2 cosðyj þ fj2Þ

..

.

rjn cosðyj þ fjnÞ

2
666664

3
777775, (31)

_qð0Þ ¼ ajCj

rj1 cosðyj þ fj1Þ

rj2 cosðyj þ fj2Þ

..

.

rjn cosðyj þ fjnÞ

2
666664

3
777775þ ojCj

rj1 sinðyj þ fj1Þ

rj2 sinðyj þ fj2Þ

..

.

rjn sinðyj þ fjnÞ

2
666664

3
777775. (32)

Finally, in an undamped or classically damped mode there may be non-clamped positions at which the
displacement is zero at all times. These positions, referred to as nodes, are fixed in space. In contrast, the
positions of zero displacement (instantaneous nodes) in a non-classically damped mode drift around in space, as
will be illustrated in a numerical example. There are generally not any fixed positions for mounting additional
equipment without disturbing a non-classically damped mode.

5. The mechanics of decoupling of oscillatory systems

What is the essential difference between a classically damped mode and a non-classically damped mode? In
a classically damped mode of vibration, the various components of a system are either in phase or out of phase
with each other, and they pass through their equilibrium positions at the same instant of time. This is not the
case for a non-classically damped mode. Indeed, a classically damped mode has the property that fj1 ¼

fj2 ¼ � � � ¼ fjn ¼ 0 while not all phase angles fjk are zero in a non-classically damped mode. If suitable phase
shifts are introduced into each non-classically damped mode so that all components are either in phase or out
of phase, it is possible to transform a non-classically damped system into one with classical damping. A basic
objective of a process termed phase synchronization is to do just that.

5.1. Phase synchronization of damped modes

Define a phase shift of the damped mode sj(t) into yj(t) by

yjðtÞ ¼

yj1ðtÞ

yj2ðtÞ

..

.

yjnðtÞ

2
666664

3
777775 ¼

sj1ðtþ fj1=ojÞ

sj2ðtþ fj2=ojÞ

..

.

sjnðtþ fjn=ojÞ

2
666664

3
777775. (33)

It follows from Eq. (27) that

yjðtÞ ¼ Cje
aj t cosðoj t� yjÞ

rj1e
ajfj1=oj

rj2e
ajfj2=oj

..

.

rjne
ajfjn=oj

2
666664

3
777775. (34)

A system that possesses yj(t) as its damped modes of vibration is classically damped. What is the equation of
motion of such a system? To answer this question, let

zj ¼ ½rj1e
ajfj1=oj rj2e

ajfj2=oj � � � rjne
ajfjn=oj �T (35)
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for j ¼ 1; . . . ; n. If z1; . . . ; zn are linearly independent, define a real modal matrix Z with zj as its columns
such that

Z ¼ ½z1jz2j � � � jzn�. (36)

If z1; . . . ; zn are not linearly independent, choose a maximal subset of linearly independent vectors z1; . . . ; zn

with mon. By orthogonalization, determine n�m linearly independent vectors w1; . . . ;wn�m that are
orthogonal to the linear span of z1; . . . ; zm. Instead of Eq. (36), define

Z ¼ ½z1j � � � jzmjw1j � � � jwn�m�. (37)

Using either Eq. (36) or (37) whichever appropriate, the columns of Z will be linearly independent. Let

D1 ¼ �diag½lj þ lj � ¼ �diag½2a1; 2a2; . . . ; 2an�, (38)

X1 ¼ diag½ljlj� ¼ diag½a21 þ o2
1; a

2
2 þ o2

2; . . . ; a
2
n þ o2

n�. (39)

A system that possesses yj(t) as its damped modes satisfies the equation

M1 €q1 þ C1 _q1 þ K1q1 ¼ 0, (40)

where the coefficient matrices are given by

M1 ¼ Z�TZ�1, (41)

C1 ¼ Z�TD1Z
�1, (42)

K1 ¼ Z�TX1Z
�1 (43)

are symmetric and positive definite. It may be readily verified that

C1M
�1
1 K1 ¼ K1M

�1
1 C1 (44)

and therefore system (40) is classically damped. Eqs. (41)–(43) can be rewritten as

ZTM1Z ¼ I, (45)

ZTC1Z ¼ D1, (46)

ZTK1Z ¼ X1, (47)

demonstrating clearly that Z, D1, X1 are, respectively, the modal, modal damping, and spectral matrices
associated with system (40). In summary, system (1) has been transformed into a classically damped system
(40) by phase synchronization of its damped modes of vibration.

5.2. System decoupling

The classically damped system (40) can of course be decoupled by modal analysis. Let

q1 ¼ Zp. (48)

In terms of the principal or modal coordinate p, Eq. (40) becomes

€pþD1 _pþX1p ¼ 0. (49)

The above equation clearly admits the solution

pðtÞ ¼

p1ðtÞ

p2ðtÞ

..

.

pnðtÞ

2
666664

3
777775 ¼

C1e
a1t cosðo1t� y1Þ

C2e
a2t cosðo2t� y2Þ

..

.

Cne
ant cosðont� ynÞ

2
666664

3
777775. (50)
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What is the transformation that generates the original solution q(t) of system (1) once the decoupled
solution p(t) of Eq. (49) is obtained? Observe that the phase transformation (33) has an inverse such that

sjðtÞ ¼

sj1ðtÞ

sj2ðtÞ

..

.

sjnðtÞ

2
666664

3
777775 ¼

yj1ðt� fj1=ojÞ

yj2ðt� fj2=ojÞ

..

.

yjnðt� fjn=ojÞ

2
666664

3
777775. (51)

Combine Eqs. (34), (35), and (50) to obtain

yjðtÞ ¼ Cje
aj t cosðoj t� yjÞzj ¼ pjðtÞzj . (52)

It follows from Eqs. (51) and (52) that

sjðtÞ ¼

pjðt� fj1=ojÞrj1e
ajfj1=oj

pjðt� fj2=ojÞrj2e
ajfj2=oj

..

.

pjðt� fjn=ojÞrjne
ajfjn=oj

2
6666664

3
7777775
. (53)

As given in Eq. (28), q(t) is a superposition of the damped modes sj(t). Thus

qðtÞ ¼
Xn

j¼1

diag½pjðt� fj1=ojÞ; pjðt� fj2=ojÞ; . . . ; pjðt� fjn=ojÞ�zj. (54)

The real transformation above is an extension of the classical modal transformation (8). The overall
decoupling procedure may be regarded as a two-stage process. By phase synchronization, the original (M,C,K)
system is first transformed into a classically damped (M1,C1,K1) system. In the second stage the (M1,C1,K1)
system is converted into the (I,D1,X1) system by classical modal analysis. While the eigenvalues of (M,C,K),
Fig. 1. Flowcharts for decoupling linear systems in oscillatory free vibration: (a) the mechanics of decoupling and (b) algorithm for

decoupling and for response calculation.
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(M1,C1,K1), and (I,D1,X1) systems are identical, their eigenvectors are different. A flowchart depicting the
mechanics of decoupling is shown in Fig. 1(a).
5.3. Transformation of initial conditions

The initial values of systems (1) and (49) are transformed in accordance to

qð0Þ ¼
Xn

j¼1

diag½pjð�fj1=ojÞ; pjð�fj2=ojÞ; . . . ; pjð�fjn=ojÞ�zj, (55)

_qð0Þ ¼
Xn

j¼1

diag½ _pjð�fj1=ojÞ; _pjð�fj2=ojÞ; . . . ; _pjð�fjn=ojÞ�zj. (56)

It is thus necessary to start pj(t) at a negative time tj ¼ �maxkðfjk=ojÞ. This situation arises because phase
synchronization ‘‘pushes back’’ the element sjk(t) by an interval of length fjk=oj. To connect the initial
conditions of q(t) and p(t) at the same instant t ¼ 0, write Eq. (28) in the form

qðtÞ ¼
Xn

j¼1

ðajvje
lj t þ ajvje

l̄j tÞ ¼ VeKtaþ VeKta, (57)

where

V ¼ ½v1jv2j � � � jvn�, (58)

K ¼ diag½l1; l2; . . . ; ln�, (59)

a ¼ ½a1 a2 � � � an�
T. (60)

As a state equation,

qðtÞ

_qðtÞ

" #
¼

V V

VK VK

" #
eKt 0

0 eKt

" #
a

a

� �
, (61)

which implies that

qð0Þ

_qð0Þ

" #
¼

V V

VK VK

" #
a

a

� �
. (62)

On the other hand, Eq. (50) yields

pjðtÞ ¼ Cje
aj t cosðoj t� yjÞ, (63)

_pjðtÞ ¼ ajCje
aj t cosðoj t� yjÞ � ojCje

aj t sinðoj t� yjÞ. (64)

Recall Eq. (25) to obtain

pjð0Þ ¼ Cj cos yj ¼ Re½2aj� ¼ aj þ aj, (65)

_pjð0Þ ¼ ajCj cos yj þ ojCj sin yj ¼ Re½2ljaj� ¼ ljaj þ ljaj. (66)

In the form of a state equation,

pð0Þ

_pð0Þ

" #
¼

I I

K K

� �
a

a

� �
. (67)
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Combine Eqs. (62) and (67) to result in

pð0Þ

_pð0Þ

" #
¼

I I

K K

� �
V V

VK VK

" #�1
qð0Þ

_qð0Þ

" #
. (68)

It can be readily shown that the overall transformation matrix in the above expression is real and invertible.
In fact, Eq. (68) can be written explicitly as

pð0Þ ¼ 2Re½ðVKV�1V� VKÞ�1VKV�1�qð0Þ � 2Re½ðVKV�1V� VKÞ�1�_qð0Þ, (69)

_pð0Þ ¼ 2Re½KðVKV�1V� VKÞ�1VKV�1�qð0Þ � 2Re½KðVKV�1V� VKÞ�1�_qð0Þ. (70)

There is a subtle difference between the above expressions and Eqs. (55) and (56): when the initial conditions
of systems (1) and (49) are connected at the same instant, the displacements and velocities can no longer be
separated in different equations.

5.4. Exact response by decoupling

After the initial values p(0) and _pð0Þ have been determined, the exact solution p(t) of the decoupled system
(49) can be written as

pjðtÞ ¼ eaj t pjð0Þ cos oj tþ
_pjð0Þ � ajpjð0Þ

oj

sin oj t

� �
(71)

for j ¼ 1; . . . ; n. The original solution q(t) of system (1) can then be obtained by substituting Eq. (71) into (54).
Quantities such as aj, oj, fjk, zj that appear in the exact response are all obtained by solution of the quadratic
eigenvalue problem (14). A flowchart outlining the algorithm of solution by decoupling is shown in Fig. 1(b).
Perhaps it should be stated that response calculation is probably not the most important reason for system
decoupling. It is the possibility, for example, of modal reduction (using the real damped modes) and of an
investigation of energy distribution among independent coordinates that would make decoupling worthwhile.
These practical issues will be pursued elsewhere in the future.

5.5. Reduction to classical modal analysis

The method of phase synchronization is a direct generalization of classical modal analysis. If system (1) is
undamped or classically damped, each eigenvector vj is real and the phase angles fj1 ¼ fj2 ¼ � � � ¼ fjn ¼ 0. In
this case the phase transformation (33) reduces to the identity transformation so that (M,C,K) and (M1,C1,K1)
are the same. Moreover, Eq. (54) simplifies to

qðtÞ ¼
Xn

j¼1

pjðtÞzj ¼
Xn

j¼1

pjðtÞuj, (72)

which coincides with the classical modal transformation (8).
Finally, it should be pointed out that decoupling by phase synchronization is not a unique procedure. Phase

synchronization involves the damped modes, which are defined in terms of the eigenvectors vj of Eq. (14).
However, each eigenvector of Eq. (14) can only be determined up to an arbitrary multiplicative constant. The
eigenvectors vj may be normalized for convenience in accordance with, for example,

2ljv
T
j Mvj þ vTj Cvj ¼ 2ioj. (73)

The above normalization reduces to normalization with respect to the mass matrix M for an undamped or
classically damped system [6]. Any normalization can only specify the magnitude of vj but its sign is still
arbitrary. With or without normalization, the equations of phase synchronization are not unique although the
decoupling process is always valid. For instance, if yj(t) in Eq. (33) is a synchronized damped mode, so is
�yj(t). This issue of non-uniqueness should not be surprising since a similar situation exists in classical modal
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analysis: the modal transformation (8) is not unique because any classical normal mode uj in Eq. (8) may be
replaced by �uj.

5.6. Comparison with Hamiltonian approach

In theory, it is always possible to investigate a non-classically damped system with the Hamiltonian
approach, whereby the second-order Eq. (1) is recast into a first-order system of dimension 2n. The state space
representation is one such approach. Every procedure and every equation in configuration space can in
principle be cast in state space. If lj and vj are the 2n complex eigenvalues and eigenvectors of Eq. (14), it can
be shown that the eigenvalues and eigenvectors of the state companion matrix

A ¼
0 I

�M�1K �M�1C

� �
(74)

are, respectively, lj and ½v
T
j ljv

T
j �

T. Even the decoupling transformation (54) can be written as

pðtÞ

_pðtÞ

" #
¼

I I

K K

� �
V V

VK VK

" #�1
qðtÞ

_qðtÞ

" #
. (75)

Unlike Eq. (54), the displacements and velocities can no longer be separated in the above expression. Perhaps
it should be emphasized that the decoupling methodology of this paper has been developed through intuition:
by phase synchronization of the real and physically excitable damped modes of vibration. It is not obvious
how Eq. (75) can be independently derived without recourse to configuration space. Similar observations may
be made in the 2n-dimensional phase space (with generalized momenta replacing the velocities).

5.7. Efficiency of solution by decoupling

Although system solution is probably not the most important reason for decoupling, it may still be
instructive to compare the efficiency of solution of Eq. (1) by direct numerical integration and by decoupling.
One measure of the performance of an algorithm is the number of floating point operations (flops) required to
evaluate the response at m time points within a given time window. The flops associated with three procedures
will be compared. (a) In direct numerical integration, a standard procedure is to rewrite Eq. (1) in first-order
form using the state companion matrix in Eq. (74). The state equation is then discretized, and the resulting
system of 2n coupled difference equations is solved by matrix computations [36]. This procedure involves one-
time computation of the exponential matrix expðADtÞ, where Dt is the sampling time, and one matrix–vector
multiplication at each step. The estimate of flops for response calculation at m instants is [37–40]

N1 ¼ 160n3 þ 8mn2, (76)

where n is the number of degrees of freedom of system (1) and mbn in general.
In solving Eq. (1) by decoupling, two alternative procedures may be used. (b) It is possible to evaluate

the m responses by directly invoking Eqs. (54) and (71). This procedure involves one-time solution of Eqs. (14)
and (68), plus evaluation of Eqs. (54) and (71) at each step. The estimate of flops for this procedure is
[33,38–40]

N2 ¼ 213n3 þ 2mn2. (77)

(c) Another method of solution is to decouple Eq. (1) through solution of Eq. (14) followed by direct
integration of each decoupled equation (this procedure should be used in forced vibration). If each decoupled
equation is solved numerically with the same algorithm used in procedure (a) for direct integration of Eq. (1),
the estimate of flops is

N3 ¼ 213n3 þ 2mn2 þ 8mnþ 1280n. (78)

The variations of N1, N2, and N3 with n are illustrated in Fig. 2(a) for a window containing m ¼ 105 instants.
It is observed that the curves associated with N2, N3 agree within the line thickness and that procedures (b) and
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(c) are more efficient than (a). In fact, the estimate of flops shown in Fig. 2(a) is very conservative for two
reasons. First, N3 has been estimated by using the same sampling time in the integration of all decoupled
equations. If an optimal sampling time is individually chosen for each decoupled equation, N3 may decrease
substantially. Second, Fig. 2(a) is generated by using a window of m ¼ 105 points that begins from t ¼ 0, the
time at which initial values are prescribed. For any window that begins from a time db0, numerical
integration must still start from the initial time t ¼ 0. A large number of iterations may be required over the
interval 0otod before the window of interest is reached. Thus for db0, N1 and N3 increase appreciably while
N2 remains constant. This situation is depicted in Fig. 2(b), in which N1, N2, and N3 are plotted against d. It is
observed that N1 increases more rapidly than N3. Based upon Fig. 2(b), it may be stated that solution by
decoupling generally reduces the flops and economizes on both core memory and computing time.

6. Illustrative examples

Three examples will be given to illustrate damped modes of vibration as well as the process of decoupling by
phase synchronization. Complete details are given in Example 1 to provide physical insight and to reinforce
the mathematical concepts expounded earlier.

Example 1. Consider a mass–spring–damper system governed by an equation of the type (1), with

M ¼ m
1 0

0 1

� �
; C ¼

c1 þ c2 �c2

�c2 c2 þ c3

" #
; K ¼ k

2 �1

�1 2

� �
, (79)
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and initial conditions

qð0Þ ¼ ½1 2�T; _qð0Þ ¼ ½�1 1�T. (80)

The system is shown in Fig. 3. For convenience, let m ¼ k ¼ 1. Three different cases will be examined.
(a) System is undamped: c1 ¼ c2 ¼ c3 ¼ 0. Solution of the symmetric eigenvalue problem (3) yields, upon

normalization with respect to the mass matrix,

X ¼ diag½1;=3�; U ¼ ½u1ju2� ¼
1ffiffiffi
2
p

1 1

1 �1

� �
. (81)

The general solution is a superposition of two natural modes of vibration such that

qðtÞ ¼
X2
j¼1

sjðtÞ ¼ C1 cosðt� y1Þu1 þ C2 cosð
ffiffiffi
3
p

t� y2Þu2. (82)

The constants C1, C2, y1, and y2 are determined by the initial conditions. As shown in Fig. 4, the system
components in each mode are either in phase or out of phase so that modal vibration appears truly
synchronous. The system can be decoupled by classical modal analysis.

(b) Classically damped system: c1 ¼ c2 ¼ c3 ¼ 0:1. Since C ¼ 0:1K, the system is proportionally damped.
The general solution is given by

qðtÞ ¼
X2
j¼1

sjðtÞ ¼ C1e
�0:05t cosð1:00t� y1Þu1 þ C2e

�0:15t cosð1:73t� y2Þu2. (83)

As shown in Fig. 5, the system components in each mode are again either in phase or out of phase but, in
contrast to case (a), they decay exponentially. The system can still be decoupled by classical modal analysis.

(c) Non-classically damped system: c1 ¼ 0:6, c2 ¼ c3 ¼ 0:1. Since condition (12) is not satisfied, the system is
non-classically damped and it cannot be decoupled by classical modal analysis. Solution of the quadratic
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eigenvalue problem (14) yields

l1 ¼ l3 ¼ �0þ :181:00i; v1 ¼ v3 ¼
0:74e�i7:38

�

�0:72e�i172:51
�

" #
, (84)

l2 ¼ l4 ¼ �0þ :271:68i; v2 ¼ v4 ¼
�0:73e�i167:13

�

�0:73e�i12:68
�

" #
, (85)

where for convenience, the eigenvectors are normalized in accordance with Eq. (73). From Eq. (27), the two
non-classically damped modes of vibration are given by

s1ðtÞ ¼ C1e
�0:18t

0:74 cosð1:00t� y1 � 7:38�Þ

�0:72 cosð1:00t� y1 � 172:51�Þ

" #
, (86)

s2ðtÞ ¼ C2e
�0:27t

�0:73 cosð1:68t� y2 � 167:13�Þ

�0:73 cosð1:68t� y2 � 12:68�Þ

" #
. (87)

The general solution is a superposition of these two real damped modes. As can be easily seen in Fig. 6, there is
indeed a constant phase difference between the two components in each mode. In phase synchronization, sj(t)
are transformed into yj(t) in accordance with Eq. (33) such that

y1ðtÞ ¼ C1e
�0:18t cosð1:00t� y1Þz1, (88)

y2ðtÞ ¼ C2e
�0:27t cosð1:68t� y2Þz2. (89)
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It can be verified that

Z ¼ ½z1jz2� ¼
0:72 �0:46

�0:42 �0:70

� �
, (90)

D1 ¼ �diag½lj þ lj � ¼ diag½0:36; 0:54�, (91)

X1 ¼ diag½ljlj � ¼ diag½1:03; 2:90�: (92)

Upon decoupling, the equation of motion becomes €pþD1 _pþX1p ¼ 0. Using Eq. (68), the initial conditions
of the decoupled system are

pð0Þ ¼ ½2:32 � 0:71�T; _pð0Þ ¼ ½�0:50 2:09�T. (93)

The solution q(t) of the original system can be readily recovered from solution p(t) of the decoupled system by
Eq. (54). It can be checked that q(t), whether generated by decoupling or by direct numerical solution of the
original equation of motion, is the same.

As mentioned earlier, the positions of zero displacement in a non-classically damped mode are not fixed and
they drift around in space. To examine the loci of these instantaneous nodes, set up a rectilinear x-coordinate
along the line of motion of the masses in Fig. 3. Locate the origin x ¼ 0 at the static equilibrium of the left
mass and locate x ¼ 1 at the static equilibrium of the right mass. In cases (a) and (b), the first mode does not
have any node while the second mode possesses one node at x ¼ 0.5. In case (c), it can be checked that the first
non-classically damped mode possesses an instantaneous node at

x1ðtÞ ¼ 1þ
0:72

0:74

cosð1:00t� 172:51�Þ

cosð1:00t� 7:38�Þ

� ��1
, (94)
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while the second non-classically damped mode possesses an instantaneous node at

x2ðtÞ ¼ 1� 1:00
cosð1:68t� 12:68�Þ

cosð1:68t� 167:13�Þ

� ��1
. (95)

The loci of the instantaneous nodes are plotted in Fig. 7 over a cycle. In general, there are not any fixed
positions for mounting additional equipment without disturbing a non-classically damped mode.

Example 2. A four-degree-of-freedom system of the form (1) is defined by M ¼ I,

C ¼ 0:1

7 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

2
6664

3
7775; K ¼

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

2
6664

3
7775, (96)

with initial conditions

qð0Þ ¼ ½1 2 3 4�T; _qð0Þ ¼ ½�1 1 2 � 3�T. (97)

Since condition (12) is not satisfied, the system is non-classically damped and it cannot be decoupled by modal
analysis. However, the system can be decoupled by the method of phase synchronization as outlined in the
flowcharts of Fig. 1. The decoupled system has the form €pþD1 _pþX1p ¼ 0 where

D1 ¼ diag½0:11; 0:33; 0:45; 0:41�, (98)

X1 ¼ diag½0:39; 1:41; 2:55; 3:55�. (99)

Using Eq. (68), the initial conditions of the decoupled system are

pð0Þ ¼ ½�4:76 � 2:09 0:97 � 0:64�T; _pð0Þ ¼ ½0:14 � 0:79 0:67 � 2:95�T. (100)

The solution q(t) of the original system can be readily recovered from solution p(t) of the decoupled system
by Eq. (54).

Example 3. Defective systems will now be tackled. Recall that the probability of a randomly chosen
eigenvalue problem of form (14) being defective is zero. Nonetheless, defective or degenerate systems were
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considered by a number of authors [41–45]. Consider a non-classically damped system governed by an
equation of the type (1), with

M ¼
1 0

0 1

� �
; C ¼

1

3

4 �
ffiffiffi
5
p

�
ffiffiffi
5
p

8

" #
; K ¼

1 0

0 4

� �
, (101)

and initial conditions

qð0Þ ¼ ½1 2�T; _qð0Þ ¼ ½�1 2�T. (102)

Solution of the quadratic eigenvalue problem (14) yields two repeated eigenvalues

l1 ¼ �1þ i; l1 ¼ �1� i. (103)

The algebraic multiplicity of each eigenvalue is two. However, there is only one eigenvector v1 ¼ ½1 � 0:22þ
i0:67�T associated with l1 and also only one eigenvector v1 associated with l1. To decouple this defective
system, a generalized theory of phase synchronization will be described concisely.

Suppose the quadratic eigenvalue problem (14) has Npn pairs of complex conjugate eigenvalues. Let mk be
the multiplicity of lk. Then mk is also the multiplicity of lk so that m1 þm2 þ � � � þmN ¼ n. If Jk is a Jordan
block of order mk associated with lk ¼ ak þ iok, Jk must be a Jordan block associated with lk ¼ ak � iok. Let

Vk ¼ ½v
k
1 jv

k
2j � � � jv

k
mk
� (104)

be a matrix of order n�mk whose columns are made up of generalized eigenvectors vk
j that constitute a

Jordan chain of length mk corresponding to lk. In contrast to Eq. (28), the general solution of system (1) now
takes the form

qðtÞ ¼
XN

k¼1

ðVke
Jktak þ VkeJktakÞ ¼

XN

k¼1

2Re½Vke
Jktak� ¼

XN

k¼1

skðtÞ, (105)

where ak are constant vectors to be obtained from initial conditions. In analogy to Eqs. (22) and (25), write

vk
j ¼ ½r

k
j1e
�ifk

j1 rk
j2e
�ifk

j2 � � � rk
jne
�ifk

jn �T, (106)

2ak ¼ ½C
k
1e
�iyk

1 Ck
2e
�iyk

2 � � � Ck
mk
e
�iyk

mk �T. (107)

It can be shown that the ith element of sk(t) is given by

skiðtÞ ¼
Xmk

j¼1

rk
ji

Xmk

l¼j

Ck
l e

akt cosðokt� yk
l � fk

jiÞ
tðl�jÞ

ðl � jÞ!
(108)

for i ¼ 1; . . . ; n. The above expression is an extension of Eq. (27). Upon phase synchronization of only the
terms

Ck
l e

akt cosðokt� yk
l � fk

jiÞ ¼ plðt� fk
ji=okÞe

akf
k
ji=ok , (109)

mk identical single-degree-of-freedom systems are obtained. However, the mk systems have different initial
conditions. This process of phase synchronization can be repeated for all N pairs of complex conjugate
eigenvalues, resulting in an n-degree-of-freedom decoupled system. The decoupling procedure outlined in the
flowchart of Fig. 1(a) remains valid for defective systems. The modal matrix Z of the classically damped
(M1,C1,K1) system that arises during decoupling consists of columns given by

zk
j ¼ ½r

k
j1e

akfk
j1=ok rk

j2e
akfk

j2=ok � � � rk
jne

akfk
jn=ok �T (110)

for j ¼ 1; . . . ;mk and k ¼ 1; . . . ;N. Clearly, the above expression is a generalization of Eq. (35). Eq. (54) that
connects p(t) with q(t) can be generalized to the form

qðtÞ ¼
XN

k¼1

Xmk

j¼1

Xmk

l¼j

tðl�jÞ

ðl � jÞ!
diag½plðt� fk

j1=okÞ; . . . ; plðt� fk
jn=okÞ�

 !
zk

j . (111)
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Initial conditions between p(t) with q(t) are still connected by Eq. (68) provided that Eqs. (58) and (59) are
replaced, respectively, by

V ¼ ½V1 V2 � � � VN �, (112)

K ¼ diag½J1;J2; . . . ;JN �: (113)

Indeed, application of phase synchronization to defective systems is straightforward but laborious. However,
physical insight is obscured due to the occurrence of Jordan blocks in many equations. Should the
methodology expounded in this paper be accepted for use, a thorough treatment of defective problems will
become more deserving.

In the present numerical example, N ¼ 1 and

J1 ¼
�1þ i 1

0 �1þ i

" #
; V1 ¼

0:53e�i18:43
�

�0:37e�i90
�

�0:83e�i126:87
�

0:37e�i90
�

" #
, (114)

where the columns of V1 are not subjected to any normalization scheme. It can be verified that

Z ¼
0:38 �0:09

�0:08 0:08

� �
, (115)

D1 ¼ 2I; X1 ¼ 2I. (116)

Upon decoupling, the equation of motion becomes €pþD1 _pþX1p ¼ 0, with

pð0Þ ¼ ½�3:47 8:15�T; _pð0Þ ¼ ½16:10 � 9:05�T. (117)

The decoupled system can be readily solved and the solution q(t) of the original system can be recovered from
p(t) by Eq. (111). The result is plotted in Fig. 8. It can be checked that q(t), whether generated by Eq. (111) or
by direct numerical solution of the equation of motion, is the same.
7. Conclusions

The purpose of this paper is to extend classical modal analysis to decouple any viscously damped linear
system in oscillatory free vibration. Based upon an exposition of the mechanics of viscous damping, a real
time-varying transformation has been constructed in the configuration space to decouple oscillatory free
vibration. The decoupling procedure devised herein possesses tremendous physical insight (such as real and
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physically excitable damped modes) and it also lends itself to numerical computations. Major findings of this
paper are summarized in the following statements.
1.
 In a non-classically damped mode of vibration all system components perform harmonic vibration with an
identical frequency but with different phase angles. In each cycle these components pass through their
equilibrium positions in the same order separated by constant phase differences.
2.
 A non-classically damped system can be transformed into one with classical damping by synchronizing the
phase angles in its damped modes so that all components are either in phase or out of phase.
3.
 Any viscously damped linear system in oscillatory free vibration can be completely decoupled. Flowcharts
outlining the decoupling procedure have been given in Fig. 1. The solution of the original (M,C,K) system
can be recovered from that of the decoupled (I,D1,X1) system by the real transformation (54). Their initial
conditions are connected by Eqs. (55) and (56) or, equivalently, by Eq. (68).
4.
 The method of decoupling by phase synchronization reduces to classical modal analysis for systems that are
undamped or classically damped.

To streamline the introduction of new concepts, it has been assumed that all eigenvalues of the quadratic
eigenvalue problem (14) are complex and distinct. As explained previously, these assumptions can be readily
relaxed so that any damped linear dynamical system can be decoupled. This paper constitutes the first part of a
complete solution to the ‘‘classical decoupling problem’’ of linear systems. Non-oscillatory free vibration and
forced vibration will be treated in a future paper [34]. In non-oscillatory systems there will not be any real
oscillations to synchronize while in forced vibration a new decoupling transformation will be required.

System decoupling plays a fundamental role not only in linear vibrations but also in diverse areas such as
quantum mechanics, mathematical economics, and computational science. Upon decoupling, a system can be
regarded as composing of independent single-degree-of-freedom components. This not only provides an
efficient means of evaluating the system response but also greatly facilitates qualitative analysis. Among other
things, it is hoped that this paper would point to directions along which further research efforts should be
made. One such direction is obvious. The symmetry of M, C, and K has not been used directly in phase
synchronization. Thus the method devised in this paper may be further extended to decouple certain systems
with non-symmetric coefficient matrices. The study of other issues, such as primary-secondary systems,
numerical algorithms for decoupling, and modal reduction using the real damped modes, is also worthwhile in
a subsequent course of investigation.
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